

Weight-based Wear-leveling considering Performance in Phase Change Memory

Taehee You

School of Electrical and Electronic

Engineering

Yonsei University

Seoul, Republic of Korea

xoqhd1212@yonsei.ac.kr

Hyeokjun Seo

School of Electrical and Electronic

Engineering

Yonsei University

Seoul, Republic of Korea

jjsky7@yonsei.ac.kr

Eui-Young Chung

School of Electrical and Electronic

Engineering

Yonsei University

Seoul, Republic of Korea

eychung@yonsei.ac.kr

Abstract—Phase Change Memory (PCM) is one of the most

promising memories which can replace traditional memories.

However, PCM requires wear-leveling scheme due to a limited

write counts. Although many works study for wear-leveling,

there is a lack of consideration for system performance

degradation caused by wear-leveling. Therefore, we propose

weight-based wear-leveling that minimizes the impact on

system performance by considering write count, write locality,

and wear-leveling overhead. When PCM is used as storage, the

proposed method reduces the write standard deviation by an

average of 47.4% and a maximum of 74.8% compared to the

baseline. Also, when PCM is used as main memory, the

standard deviation decreased by an average of 65% and a

maximum of 86.9%, and the read latency was improved by

21.8%.

Keywords-component; Phase Change Memory, wear-leveling,

write count, write locality, system performance

I. INTRODUCTION

Phase Change Memory (PCM) is one of the emerging
memories, which offers nonvolatile, high durability, and byte
addressability. Because of these characteristics, PCM is
studied for use in various memory layers (e.g. main memory,
storage, cache). Unfortunately, PCM can be reliably written
only a limited write count which is 108 to 109 [1][2].
Therefore, wear-leveling scheme should be essentially
applied to PCM.

Wear-leveling is a method of spreading write that is
concentrated on a specific line repeatably to distribute write
evenly. In wear-leveling, three factors should be considered
important. First, the write count of line should be considered.
Because repetitive writing to a specific line reduces the
lifetime of PCM, the method is needed to distribute the write
evenly. To resolve the problem, [3][4] swap the lines
between high and low write count, and [5-7] remap the
address every predefined interval.

Second, the write locality should be considered. Locality
means that the accessed address or around the address is
likely to referenced in the near future. However, frequently
accessed addresses change according to applications, even
the line with a high write count may no longer be written.
Therefore, both write count and locality should be
considered. In [3][4], data of frequently accessed address is

defined as hot data, and it is written to the line with a low
write count.

Lastly, system performance degradation due to additional
read/write caused by wear-leveling should be considered
[called swap overhead]. In PCM, wear-leveling progresses
line swap to balance the write count, which generates
read/write. If a host request is issued during line swap, the
host request is delayed. Because PCM has different read and
write latency, the additional read/write has a greater impact
on performance degradation.

Most of the previous works suggest wear-leveling related
to the first and second factor. In [4], they consider swap
overhead but does not consider when host request and swap
occur simultaneously. We propose a weight-base wear-
leveling (WWL) scheme considering the write count, write
locality and swap overhead to increase the life time of PCM.
WWL is processed 2-levels that are inter-region consisting of
several lines and intra-region. We use [5] with simple and
low overhead in intra-region and applies WWL between
inter-regions.

The contribution of this paper is as follows.

• We propose wear-leveling considering write locality
as well as write count. This can be used to prevent
unnecessary swap by determining whether write is
continuously issued on a line with a high write count.
This enables efficient wear-leveling and minimizes
unnecessary swap.

• We propose wear-leveling to minimize swap
overhead. The inter-region swap wear-leveling
additionally generates a lot of read/write. For this,
we propose a method to swap line-by-line without
affecting system performance when inter-regions
swaps occur.

The remainder of this paper is organized as follows. In
Section Ⅱ, we present the related work and motivation. In
Section Ⅲ, we introduce proposed wear-leveling. In Section
Ⅳ, we present our experimental results and our conclusions
in Section Ⅴ.

II. RELATED WORK AND MOTIVATION

The related work considering the writ count, write
locality, and swap overhead are as follows.

In [7], they propose 2-levels wear-leveling to counter
malicious attacks. It prevents the writing of a specific line by

Figure 1. Region based Start-gap wear-leveling [5]

randomly changing the address of the target line every
predetermined interval. However, wear-leveling occurs in
the case of even write, which causes additional read/write.

In [4], they propose wear-leveling considering system
performance. Periodically, they calculate the weight and
proceed to the region swap if they exceed the predefined
threshold. However, there is no wear-leveling in the region,
and there is insufficient consideration of the swap overhead.

In [3], they have the advantage of a small overhead for
managing wear-leveling based on 2-levels. However, as with
[4], there is a lack of consideration for the swap overhead
during region swap.

In [5], they are simple and low overhead. As shown in
Fig. 1, it includes start and gap pointer, and the position of
the gap is shifted at the predefined interval. The start pointer
is incremented if the gap pointer is located on the 0th line.
As a result, the address is constantly changed at the
predefined interval, so it is possible to write evenly. For this
reason, [5] has been combined with various wear-leveling
schemes in [6][10][11]. However, when using 2-levels as
shown in Fig. 1, additional storage space is needed for the
region size. Also, depending on the region size, the
movement of the start and the gap pointer takes a long time,
and the write count imbalance occurs. In this paper, we use
start-gap wear-leveling. To compensate for the disadvantages
of the start-gap, it is applied only to wear-leveling within the
intra-region.

We propose weight-based wear-leveling considering the
write count, write locality, and swap overhead. Depending
on the application, the space frequently accessed is
constantly changing over time [4]. That is, in case of wear-
leveling considering only write count, unnecessary swap is
generated. In addition, 2-levels wear-leveling can have a
significant effect on system performance during region swap,
so a region swap method is needed to minimize it. We
reduce the region swap and propose a way to minimize the
impact on the system performance when a region swap
occurs.

III. PROPOSED METHOD

A. Overview of Weight-based Wear-leveling (WWL)

The proposed weight-based wear-leveling (WWL)
compensates for the problem of [5] and minimizes
performance degradation. Fig. 2 shows the overview of the
proposed wear-leveling. The intra-region wear-leveling uses
the start-gap and the inter-region wear-leveling uses the
proposed WWL. WWL calculates the weight (WT) of each
region at a predefined swap interval. If the difference
between WT max and WT min is greater than the predefined

0

1

2

3

4

Start
A

B

C

DGap

Region 0

Weight = 200

E

F

G

H

0

1

2

3

4

Region 1

Weight = 160

If ,

Swap the highest weight region and lowest weight region

I

J

K

L

0

1

2

3

4

Region 2

Weight = 39

M

N

O

P

0

1

2

3

4

Region 3

Weight = 77

Figure 2. Overview of weight-based wear-leveling

threshold (TH), swap the two regions. WT includes the write
count and write locality, two important factors to be
considered in the wear-leveling mentioned above.

The formula for calculating the WT of each region is as
follows.

 WTi = α×RCi +(1-α)×ICi , (0<α<1) ()

 RCi = WCi – min(∀WC) ()

In (1), WTi means the weight value of the i-th region and
is determined by relative region write count (RC) and
intermediate region write count (IC). The α is a coefficient
factor obtained by profiling in Section Ⅳ.

RC is a factor corresponding to the write count and can
be obtained from (2). RC indicates how many write counts
are in the region than the region with the lowest write count.
In other words, RC reflects the degree of imbalance in the
number of writes in each region.

IC is a factor reflecting write locality, which means the

write count of the region during the swap interval. Since the

memory access pattern is different depending on the

application, the write access frequency may be lowered even

though the current write count is high. We can prevent

unnecessary wear-leveling through IC.

B. Weight-based wear-leveling strategy

WWL applies different wear-leveling scheme to intra-
region and inter-region. The intra-region wear-leveling is the
same as [5], and the inter-region wear-leveling operates as in
Fig. 3.

In Fig. 3, the inter-region swap check that a region swap
is needed every swap interval. The inter-region swap
decision is determined by (1). If the difference between
WTmax and WTmin

 is less than TH, the swap is not performed
due to the swap overhead. If the inter-region swap that
requires a lot of line swaps is determined, it identifies
whether the region swap is possible. It can be done via
WL_en and allows swap if the memory controller does not
have host read requests. The read requests have more impact
on system performance than write request because the read
request is completed when the data of memory is transferred
to the host, and the write request is completed when the
request is transferred from the host to the memory. Therefore,
we grant the inter-region swap if there is not a read request

0

1

2

3

4

Start
A

B

C

DGap

Region 0

E

F

G

H

0

1

2

3

4

Region 1

I

J

K

L

0

1

2

3

4

Region 2

M

N

O

P

0

1

2

3

4

Region 3

0

1

2

3

4

Region 4

Global Start Global Gap
Area Overhead

0

1

2

3

4

Start
A

B

C

DGap

Region 0

E

F

G

H

0

1

2

3

4

Region 1

I

J

K

L

0

1

2

3

4

Region 2

M

N

O

P

0

1

2

3

4

Region 3

0

1

2

3

4

Region 4

Global Start Global Gap
Area Overhead

N

Select swap regions

Y

Start

write count

% swap interval == 0,

write count++

WL_en?

Swap lines

Swap finished?

Swap region selected?

Deselect swap regions

End

Y

NN

N

N

Y

Y

Y

write count = 0,

Figure 3. The operation flow chart of weight-based wear-leveling

0

1

2

3

4

A

B

C

D

Gap 0

Physical Region 0

I

J

K

L

Gap 1

0

1

2

3

4

Physical Region 1

0

1

2

3

4

I

B

C

D

Gap 0

A

J

K

L

Gap 1

0

1

2

3

4

0

1

2

3

4

I

J

K

D

Gap 0

A

B

C

L

Gap 1

0

1

2

3

4

0

1

2

3

4

I

J

K

L

Gap 1

A

B

C

D

Gap 0

0

1

2

3

4

Swap pointer Swap pointer

Swap pointer Swap pointer

Swap pointer Swap pointer

Initial State

First Swap

Third Swap

Final State

Figure 4. Example of step by step region swap

of the memory controller. Finally, the inter-region swap is
terminated after all lines of region have been swapped.

If the all the data between the two selected regions are
swapped at once, the performance will decrease because no
other requests can be processed until the swap is completed.
Therefore, the swap should be performed step by step, and
an example of the swap operation applied is shown in Fig. 4.
For this, WWL contains a swap pointer register, which stores
the progress of the swap. First, when two regions for swap
are selected, initialize the swap pointer to zero. Then, if
WL_en is 1, we swap the lines pointed to by the swap
pointer and increment the swap pointer by one. Finally, we
repeat the above steps to completely swap data between the
two regions.

If a host request is issued before swap is completely
terminated, we can use the swap pointer to get the physical
address of the host request. For example, in Fig. 4, if a host
read request is issued to line 1 of region 0 at the third swap,
we read line 1 of the relative region (e.g. region 1) because
line 1 is located before the swap pointer. We can minimize

TABLE I. SIMULATION CONFIGURATION

Attribute Value

Environment

Synopsys’s Platform Architecture
(SystemC)

PCM congifuration 4 channel 1 way (1 GB / channel)

Wear-leveling

configuration

Intra-
region

start-gap
swap interval = 100

Inter-

region

α= 0.3

swap interval = (# of line / region) * 100

number of regions = 128

0

1000

2000

3000

4000

5000

0 0.1 0.2 0.3 0.4 0.5 0.6

S
ta

n
d
a
r
d

D
e
vi

a
ti

o
n

α value

Financial MSR Cambridge MSN Storage General Purpose PC

Figure 5. Profiling to define α

the system performance degradation through region swap by
step by step.

IV. EXPERIMENT

We evaluated the proposed wear-leveling scheme by
implementing a simulator based on Synopsys’s Platform
Architect using PCM as storage and main memory. The
configurations of simulator are summarized in Table 1. We
measured evaluation metric such as standard deviation of
write count of PCM and read latency. The timing parameters
of PCM followed by [12]. We use the financial, MSR
Cambridge, MSN storage, and general-purpose PC as storage
benchmark, with read/write ratios of (1:5.5), (1:2.3), (2.1:1),
and (3.4:1), respectively. Also, we used benchmarks with a
lot of memory access as the main memory, and each
benchmarks are described in [13]. Our experiments compare
the region-based start-gap wear-leveling (RBSG) [5].

Fig. 5 shows the standard deviation of the write count of
PCM as a result of experiment to set α. The α is the
coefficient of (1) to obtain the weight of each region. The
MSN Storage is not affected by the α because it distributes
the address evenly without the wear-leveling. Therefore, we
set α except MSN Storage. Since the standard deviation is
low in most benchmarks when α is 0.3, we set α to 0.3.

Fig. 6 shows the standard deviation of write count
according to the number of regions. As the number of
regions increases, the wear leveling effect also increases.
However, the increase in the number of regions increases the
hardware overhead for storing information for each region.
Since the standard deviation reduction rate decreases after
128 regions, we set the number of regions to 128.

Fig. 7 is an experiment to analyze the wear leveling
performance difference between RBSG and WWL.

0

2000

4000

6000

8000

10000

12000

8 16 32 64 128 256 512

S
ta

n
d
a
r
d

D
e
vi

a
ti

o
n

The number of region

Financail MSR Cambridge MSN Storage General Purpose PC

Figure 6. Profiling to define the number of region

0

0.2

0.4

0.6

0.8

1

1.2

Financail MSR Cambridge MSN Storage General Purpose

PC

Average

N
o
r
m

a
li

z
a
e
d

S
ta

n
d
a
r
d

D
e
vi

a
ti

o
n

RBSG WWL

Figure 7. Normalizaed write standard deviation in storage

0

0.2

0.4

0.6

0.8

1

1.2

filter conv hotspot matrix path finder Average

N
o
r
m

a
li

z
e
d

S
ta

n
d
a
r
d

D
e
vi

a
ti

o
n

RBSG WWL

Figure 8. Normalizaed write standard deviation in main memory

0

0.2

0.4

0.6

0.8

1

1.2

filter conv hotspot matrix path finder Average

N
o
r
m

a
li

z
e
d

R
e
a
d

L

a
te

n
c
y

baseline Proposed

Figure 9. Normalizaed read latency in main memory

The MSN Storage has similar standard deviations in both
methods because it contains even distribution of write as
mentioned above. In other benchmarks, however, RBSG
shows a high standard deviation. It is because RBSG
requires a lot of write until inter-region swap occurs. WWL

reduced the standard deviation of write by up to 74.8% and
average by 47.4% compared to RBSG.

Fig. 8 shows the standard deviation of write when using
PCM as main memory. We can see that the standard
deviation of RBSG and WWL is much different when we
use PCM as storage. This is because more write requests
have occurred in a particular region than the storage
benchmark. As a result, WWL improved by a maximum of
86.9% and an average 65% standard deviation from the
RBSG.

Fig. 9 shows the read latency of wear-leveling
considering performance when using PCM as main memory.
RBSG was excluded from comparison because of the large
standard deviation from the WWL. Also, because of the
large time interval between requests in the case of storage,
the difference in read latency is not clearly visible and is
excluded. On the other hand, in main memory, there are
many differences in read latency because the time interval
between requests is dense. In the case of the path finder,
there was less improvement in read latency due to fewer read
requests, but we could improve the average 21.7% read
latency through wear-leveling considering performance.

V. CONCLUSION

We have proposed a weight-base wear-leveling method
considering performance. This includes write count, write
locality, and performance factor that should be considered
important in wear-leveling. We reduced the write standard
deviation of the average 47.4% and 65% compared with
RBSG when using pcm in storage and main memory and
reduced the read latency by 21.7% when using pcm as main
memory. As a future work, the proposed method could be
extended to improve wear-leveling performance by
optimizing the size of line and region. Also, we will apply
wear-leveling schemes in the new memories (e.g. STT-
MRAM, ReRAM) considering each memory characteristic,
such as size of line or region and read/write latency.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (2016R1A2B4011799), and in part by
Multi-Ministry Collaborative R&D Program(R&D program
for complex cognitive technology) through the National
Research Foundation of Korea(NRF) funded by MSIT,
MOTIE, KNPA(2018M3E3A1057248), and in part by the
EDA tool was supported by the IC Design Education
Center(IDEC), Korea.

REFERENCES

[1] XUE, Chun Jason, et al. Emerging non-volatile memories:
opportunities and challenges. In: Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2011 Proceedings of the 9th
International Conference on. IEEE, 2011. p. 325-334.

[2] BURR, Geoffrey W., et al. Phase change memory technology. Journal
of Vacuum Science & Technology B, Nanotechnology and
Microelectronics: Materials, Processing, Measurement, and
Phenomena, 2010, 28.2: 223-262.

[3] YUN, Joosung; LEE, Sunggu; YOO, Sungjoo. Bloom filter-based
dynamic wear leveling for phase-change RAM. In: Proceedings of the

Conference on Design, Automation and Test in Europe. EDA
Consortium, 2012. p. 1513-1518.

[4] DONG, Jianbo, et al. Wear rate leveling: Lifetime enhancement of
PRAM with endurance variation. In: Proceedings of the 48th Design
Automation Conference. ACM, 2011. p. 972-977.Bloom filter based
dynamic wear leveling.

[5] QURESHI, Moinuddin K., et al. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In:
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2009. p. 14-23.Security
refresh 2010.

[6] JIANG, Lei, et al. LLS: Cooperative integration of wear-leveling and
salvaging for PCM main memory. 2011.

[7] SEONG, Nak Hee; WOO, Dong Hyuk; LEE, Hsien-Hsin S. Security
refresh: prevent malicious wear-out and increase durability for phase-
change memory with dynamically randomized address mapping. In:
ACM SIGARCH computer architecture news. ACM, 2010. p. 383-
394.

[8] LIU, Duo, et al. Curling-PCM: Application-specific wear leveling for
phase change memory based embedded systems. In: Design
Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific. IEEE, 2013. p. 279-284.

[9] CHANG, Hung-Sheng, et al. Marching-based wear-leveling for
PCM-based storage systems. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2015, 20.2: 25.

[10] ZHANG, Jiangwei, et al. RETROFIT: Fault-aware Wear Leveling.
IEEE Computer Architecture Letters, 2018.

[11] JIANG, Lei, et al. Improving write operations in MLC phase change
memory. In: High Performance Computer Architecture (HPCA),
2012 IEEE 18th International Symposium on. IEEE, 2012. p. 1-10.

[12] Y. Choi, I. Song, M. H. Park, H. Chung, S. Chang, B. Cho, et al., “A
20nm 1.8 V 8Gb PRAM with 40MB/s program bandwidth,” In
SolidState Circuits Conference Digest of Technical Papers (ISSCC),
2012, pp.46-48, February 2012.

[13] PARK, Sang-Hoon, et al. Wear-leveling scheduler for phase-change
RAM main memory for mobile consumer electronics. In: Consumer
Electronics (ISCE 2014), The 18th IEEE International Symposium on.
IEEE, 2014. p. 1-3.

