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Abstract—Phase Change Memory (PCM) is one of the most 

promising memories which can replace traditional memories. 

However, PCM requires wear-leveling scheme due to a limited 

write counts. Although many works study for wear-leveling, 

there is a lack of consideration for system performance 

degradation caused by wear-leveling.  Therefore, we propose 

weight-based wear-leveling that minimizes the impact on 

system performance by considering write count, write locality, 

and wear-leveling overhead. When PCM is used as storage, the 

proposed method reduces the write standard deviation by an 

average of 47.4% and a maximum of 74.8% compared to the 

baseline. Also, when PCM is used as main memory, the 

standard deviation decreased by an average of 65% and a 

maximum of 86.9%, and the read latency was improved by 

21.8%.  

Keywords-component; Phase Change Memory, wear-leveling, 

write count, write locality, system performance 

I.  INTRODUCTION 

Phase Change Memory (PCM) is one of the emerging 
memories, which offers nonvolatile, high durability, and byte 
addressability. Because of these characteristics, PCM is 
studied for use in various memory layers (e.g. main memory, 
storage, cache). Unfortunately, PCM can be reliably written  
only a limited write count which is 108 to 109  [1][2]. 
Therefore, wear-leveling scheme should be essentially 
applied to PCM.  

Wear-leveling is a method of spreading write that is 
concentrated on a specific line repeatably to distribute write 
evenly. In wear-leveling, three factors should be considered 
important. First, the write count of line should be considered. 
Because repetitive writing to a specific line reduces the 
lifetime of PCM, the method is needed to distribute the write 
evenly. To resolve the problem, [3][4] swap the lines 
between high and low write count, and [5-7] remap the 
address every predefined interval. 

Second, the write locality should be considered. Locality 
means that the accessed address or around the address is 
likely to referenced in the near future. However, frequently 
accessed addresses change according to applications, even 
the line with a high write count may no longer be written. 
Therefore, both write count and locality should be 
considered. In [3][4], data of frequently accessed address is 

defined as hot data, and it is written to the line with a low 
write count. 

Lastly, system performance degradation due to additional 
read/write caused by wear-leveling should be considered 
[called swap overhead]. In PCM, wear-leveling progresses 
line swap  to balance the write count, which generates 
read/write. If a host request is issued during line swap, the 
host request is delayed. Because PCM has different read and 
write latency, the additional read/write has a greater impact 
on performance degradation. 

Most of the previous works suggest wear-leveling related 
to the first and second factor. In [4], they consider swap 
overhead but does not consider when host request and swap 
occur simultaneously. We propose a weight-base wear-
leveling (WWL) scheme considering the write count, write 
locality and swap overhead to increase the life time of PCM. 
WWL is processed 2-levels that are inter-region consisting of 
several lines and intra-region. We use [5] with simple and 
low overhead in intra-region and applies WWL  between 
inter-regions. 

The contribution of this paper is as follows. 

• We propose wear-leveling considering write locality 
as well as write count. This can be used to prevent 
unnecessary swap by determining whether write is 
continuously issued on a line with a high write count. 
This enables efficient wear-leveling and minimizes 
unnecessary swap. 

• We propose wear-leveling to minimize swap 
overhead. The inter-region swap wear-leveling 
additionally generates a lot of read/write. For this, 
we propose a method to swap line-by-line without 
affecting system performance when inter-regions 
swaps occur. 

The remainder of this paper is organized as follows. In 
Section Ⅱ, we present the related work and motivation. In 
Section Ⅲ, we introduce proposed wear-leveling. In Section 
Ⅳ, we present our experimental results and our conclusions 
in Section Ⅴ. 

II. RELATED WORK AND MOTIVATION 

The related work considering the writ count, write 
locality, and swap overhead are as follows.  

In [7], they propose 2-levels wear-leveling to counter 
malicious attacks. It prevents the writing of a specific line by  



 

 

Figure 1.  Region based Start-gap wear-leveling [5] 

randomly changing the address of the target line every 
predetermined interval. However, wear-leveling occurs in 
the case of even write, which causes additional read/write.  

In [4], they propose wear-leveling considering system 
performance. Periodically, they calculate the weight and 
proceed to the region swap if they exceed the predefined 
threshold. However, there is no wear-leveling in the region, 
and there is insufficient consideration of the swap overhead. 

In [3], they have the advantage of a small overhead for 
managing wear-leveling based on 2-levels. However, as with 
[4], there is a lack of consideration for the swap overhead 
during region swap. 

In [5], they are simple and low overhead. As shown in 
Fig. 1, it includes start and gap pointer, and the position of 
the gap is shifted at the predefined interval. The start pointer 
is incremented if the gap pointer is located on the 0th line. 
As a result, the address is constantly changed at the 
predefined  interval, so it is possible to write evenly. For this 
reason, [5] has been combined with various wear-leveling 
schemes in [6][10][11]. However, when using 2-levels as 
shown in Fig. 1, additional storage space is needed for the 
region size. Also, depending on the region size, the 
movement of the start and the gap pointer takes a long time, 
and the write count imbalance occurs. In this paper, we use 
start-gap wear-leveling. To compensate for the disadvantages 
of the start-gap, it is applied only to wear-leveling within the 
intra-region. 

We propose weight-based wear-leveling considering the 
write count, write locality, and swap overhead. Depending 
on the application, the space frequently accessed is 
constantly changing over time [4]. That is, in case of wear-
leveling considering only write count, unnecessary swap is 
generated. In addition, 2-levels wear-leveling can have a 
significant effect on system performance during region swap, 
so a region swap method is needed to minimize it. We 
reduce the region swap and propose a way to minimize the 
impact on the system performance when a region swap 
occurs. 

III. PROPOSED METHOD 

A. Overview of Weight-based Wear-leveling (WWL) 

The proposed weight-based wear-leveling (WWL) 
compensates for the problem of [5] and minimizes 
performance degradation. Fig. 2 shows the overview of the
proposed wear-leveling. The intra-region wear-leveling uses 
the start-gap and the inter-region wear-leveling uses the 
proposed WWL. WWL calculates the weight (WT) of each 
region at a predefined swap interval. If the difference 
between WT max and WT min is greater than the predefined  
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Figure 2.  Overview of weight-based wear-leveling 

threshold (TH), swap the two regions. WT includes the write 
count and write locality, two important factors to be 
considered in the wear-leveling mentioned above. 

The formula for calculating the WT of each region is as 
follows. 

 WTi = α×RCi +(1-α)×ICi , (0<α<1) () 

 RCi = WCi – min(∀WC) () 

In (1), WTi means the weight value of the i-th region and 
is determined by relative region write count (RC) and 
intermediate region write count (IC).  The α is a coefficient 
factor obtained by profiling in Section Ⅳ. 

RC is a factor corresponding to the write count and can 
be obtained from (2). RC indicates how many write counts 
are in the region than the region with the lowest write count. 
In other words, RC reflects the degree of imbalance in the 
number of writes in each region. 

IC is a factor reflecting write locality, which means the 

write count of the region during the swap interval. Since the 

memory access pattern is different depending on the 

application, the write access frequency may be lowered even 

though the current write count is high. We can prevent 

unnecessary wear-leveling through IC. 

B. Weight-based wear-leveling strategy 

WWL applies different wear-leveling scheme to intra-
region and inter-region. The intra-region wear-leveling is the 
same as [5], and the inter-region wear-leveling operates as in 
Fig. 3. 

In Fig. 3, the inter-region swap check that a region swap 
is needed every swap interval. The inter-region swap 
decision is determined by (1). If the difference between 
WTmax and WTmin

 is less than TH, the swap is not performed 
due to the swap overhead. If the inter-region swap that 
requires a lot of line swaps is determined, it identifies 
whether the region swap is possible. It can be done via 
WL_en and allows swap if the memory controller does not 
have host read requests.  The read requests have more impact 
on system performance than write request because the read 
request is completed when the data of memory is transferred 
to the host, and the write request is completed when the 
request is transferred from the host to the memory. Therefore, 
we grant the inter-region swap if there is not a read request  

0

1

2

3

4

Start
A

B

C

DGap

Region 0

E

F

G

H

0

1

2

3

4

Region 1

I

J

K

L

0

1

2

3

4

Region 2

M

N

O

P

0

1

2

3

4

Region 3

0

1

2

3

4

Region 4

Global Start Global Gap
Area Overhead

0

1

2

3

4

Start
A

B

C

DGap

Region 0

E

F

G

H

0

1

2

3

4

Region 1

I

J

K

L

0

1

2

3

4

Region 2

M

N

O

P

0

1

2

3

4

Region 3

0

1

2

3

4

Region 4

Global Start Global Gap
Area Overhead



 

 

N

Select swap regions

Y

Start

write count 

% swap interval == 0,

write count++

WL_en?

Swap lines

Swap finished?

Swap region selected?

Deselect swap regions

End

Y

NN

N

N

Y

Y

Y

write count = 0,
              

 

Figure 3.  The operation flow chart of weight-based wear-leveling 
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Figure 4.  Example of step by step region swap  

of the memory controller. Finally, the inter-region swap is 
terminated after all lines of region have been swapped. 

If  the all the data between the two selected regions are 
swapped at once, the performance will decrease because no 
other requests can be processed until the swap is completed. 
Therefore, the swap should be performed step by step, and 
an example of the swap operation applied is shown in Fig. 4. 
For this, WWL contains a swap pointer register, which stores 
the progress of the swap. First, when two regions for swap 
are selected, initialize the swap pointer to zero. Then, if 
WL_en is 1, we swap the lines pointed to by the swap 
pointer and increment the swap pointer by one. Finally, we 
repeat the above steps to completely swap data between the 
two regions. 

If a host request is issued before swap is completely 
terminated, we can use the swap pointer to get the physical  
address of  the host request. For example, in Fig. 4, if a host 
read request is issued to line 1 of region 0 at the third swap, 
we read line 1 of the relative region (e.g. region 1) because 
line 1 is located before the swap pointer. We can minimize  

TABLE I.  SIMULATION CONFIGURATION 

Attribute Value 

Environment 

Synopsys’s Platform Architecture 
(SystemC) 

PCM congifuration 4 channel 1 way (1 GB / channel) 

Wear-leveling 

configuration 

Intra-
region 

start-gap 
swap interval = 100 

Inter-

region 

α= 0.3 

swap interval = (# of line / region) * 100 

number of regions = 128 
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Figure 5.  Profiling to define α 

the system performance degradation through region swap by 
step by step. 

IV. EXPERIMENT 

We evaluated the proposed wear-leveling scheme by 
implementing a simulator based on Synopsys’s Platform 
Architect  using PCM as storage and main memory. The 
configurations of simulator are summarized in Table 1. We 
measured evaluation metric such as standard deviation of 
write count of PCM and read latency. The timing parameters 
of PCM followed by [12]. We use the financial, MSR 
Cambridge, MSN storage, and general-purpose PC as storage 
benchmark, with read/write ratios of (1:5.5), (1:2.3), (2.1:1), 
and (3.4:1), respectively. Also, we used benchmarks with a 
lot of memory access as the main memory, and each 
benchmarks are described in [13]. Our experiments compare 
the region-based start-gap wear-leveling (RBSG) [5]. 

Fig. 5 shows the standard deviation of the write count of 
PCM as a result of experiment to set α. The α is the 
coefficient of (1) to obtain the weight of each region. The 
MSN Storage is not affected by the α because it distributes 
the address evenly without the wear-leveling. Therefore, we 
set α except MSN Storage. Since the standard deviation is 
low in most benchmarks when α is 0.3, we set α to 0.3. 

Fig. 6 shows the standard deviation of write count 
according to the number of regions. As the number of 
regions increases, the wear leveling effect also increases. 
However, the increase in the number of regions increases the 
hardware overhead for storing information for each region. 
Since the standard deviation reduction rate decreases after 
128 regions, we set the number of regions to 128. 

Fig. 7 is an experiment to analyze the wear leveling 
performance difference between RBSG and WWL.  
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Figure 6.  Profiling to define the number of region 
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Figure 7.  Normalizaed write standard deviation in storage 
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Figure 8.  Normalizaed write standard deviation in main memory 
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Figure 9.  Normalizaed read latency in main memory 

The MSN Storage has similar standard deviations in both 
methods because it contains even distribution of write as 
mentioned above. In other benchmarks, however, RBSG 
shows a high standard deviation. It is because RBSG 
requires a lot of write until inter-region swap occurs. WWL 

reduced the standard deviation of write by up to 74.8% and 
average by 47.4% compared to RBSG. 

Fig. 8 shows the standard deviation of write when using 
PCM as main memory. We can see that the standard 
deviation of RBSG and WWL is much different when we 
use PCM as storage. This is because more write requests 
have occurred in a particular region than the storage 
benchmark. As a result, WWL improved by a maximum of 
86.9% and an average 65% standard deviation from the 
RBSG. 

Fig. 9 shows the read latency of wear-leveling 
considering performance when using PCM as main memory. 
RBSG was excluded from comparison because of the large 
standard deviation from the WWL. Also, because of the 
large time interval between requests in the case of storage, 
the difference in read latency is not clearly visible and is 
excluded. On the other hand, in main memory, there are 
many differences in read latency because the time interval 
between requests is dense. In the case of the path finder, 
there was less improvement in read latency due to fewer read 
requests, but we could improve the average 21.7% read 
latency through wear-leveling considering performance. 

V. CONCLUSION 

We have proposed a weight-base wear-leveling method 
considering performance. This includes write count, write 
locality, and performance factor that should be considered 
important in wear-leveling. We reduced the write standard 
deviation of the average 47.4% and 65% compared with 
RBSG when using pcm in storage and main memory and 
reduced the read latency by 21.7% when using pcm as main 
memory. As a future work, the proposed method could be 
extended to improve wear-leveling performance by 
optimizing the size of line and region. Also, we will apply 
wear-leveling schemes in the new memories (e.g. STT-
MRAM, ReRAM) considering each memory characteristic, 
such as size of line or region and read/write latency. 
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